ar X iv : 0 71 1 . 48 76 v 1 [ m at h . FA ] 3 0 N ov 2 00 7 Optimal Decompositions of Translations of L 2 - functions

نویسنده

  • Myung-Sin Song
چکیده

In this paper we offer a computational approach to the spectral function for a finite family of commuting operators, and give applications. Motivated by questions in wavelets and in signal processing, we study a problem about spectral concentration of integral translations of functions in the Hilbert space L(R). Our approach applies more generally to families of n arbitrary commuting unitary operators in a complex Hilbert space H, or equivalent the spectral theory of a unitary representation U of the rank-n lattice Zn in Rn. Starting with a non-zero vector ψ ∈ H, we look for relations among the vectors in the cyclic subspace in H generated by ψ. Since these vectors {U(k)ψ|k ∈ Zn} involve infinite “linear combinations,” the problem arises of giving geometric characterizations of these non-trivial linear relations. A special case of the problem arose initially in work of Kolmogorov under the name L-independence. This refers to infinite linear combinations of integral translates of a fixed function with l-coefficients. While we were motivated by the study of translation operators arising in wavelet and frame theory, we stress that our present results are general; our theorems are about spectral densities for general unitary operators, and for stochastic integrals. Mathematics Subject Classification (2000). Primary 47B40, 47B06, 06D22, 62M15; Secondary 42C40, 62M20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 81 1 . 12 76 v 1 [ m at h - ph ] 8 N ov 2 00 8 Correlation Functions for β = 1 Ensembles of Matrices of Odd Size

Using the method of Tracy and Widom we rederive the correlation functions for β = 1 Hermitian and real asymmetric ensembles of N ×N matrices with N odd.

متن کامل

ar X iv : 0 71 1 . 32 82 v 1 [ he p - ph ] 2 1 N ov 2 00 7 Study of Pure Annihilation Decays B d , s → D 0 D 0

With heavy quark limit and hierarchy approximation λ QCD ≪ m D ≪ m B , we analyze the

متن کامل

ar X iv : 0 71 1 . 26 95 v 1 [ m at h . SP ] 1 6 N ov 2 00 7 REGULARITY AND THE CESÀRO – NEVAI CLASS

We consider OPRL and OPUC with measures regular in the sense of Ullman–Stahl–Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on [−2, 2] implies lim N →∞ N −1 [ N n=1 (a n −1) 2 +b 2 n ] = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008